
J. Fluid Mech. (2005), vol. 531, pp. 159–180. c© 2005 Cambridge University Press

doi:10.1017/S0022112005003915 Printed in the United Kingdom

159
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wave degeneration in lakes
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Field observations in lakes, where the effects of the Earth’s rotation can be neglected,
suggest that the basin-scale internal wave field may be decomposed into a standing
seiche, a progressive nonlinear surge and a dispersive solitary wave packet. In this
study we use laboratory experiments to quantify the temporal energy distribution and
flux between these three component internal wave modes. The system is subjected to
a single forcing event creating available potential energy at time zero (APE). During
the first horizontal mode one basin-scale wave period (Ti), as much as 10 % and 20 %
of the APE may be found in the solitary waves and surge, respectively. The remainder
is contained in the horizontal mode one seiche or lost to viscous dissipation. These
findings suggest that linear analytical solutions, which consider only basin-scale wave
motions, may significantly underestimate the total energy contained in the internal
wave field. Furthermore, linear theories prohibit the development of the progressive
nonlinear surge, which serves as a vital link between basin-scale and sub-basin-scale
motions. The surge receives up to 20 % of the APE during a nonlinear steepening
phase and, in turn, conveys this energy to the smaller-scale solitary waves as dispersion
becomes significant. This temporal energy flux may be quantified in terms of the ratio
of the linear and nonlinear terms in the nonlinear non-dispersive wave equation.
Through estimation of the viscous energy loss, it was established that all inter-modal
energy flux occurred before 2Ti; the modes being independently damped thereafter.
The solitary wave energy remained available to propagate to the basin perimeter,
where although it is beyond the scope of this study, wave breaking is expected. These
results suggest that a periodically forced system with sloping topography, such as a
typical lake, may sustain a quasi-steady flux of 20 % of APE to the benthic boundary
layer at the depth of the metalimnion.

1. Introduction
Internal waves were first observed in lakes by Watson (1904) and Wedderburn

(1907). They interpreted a temperature oscillation in Loch Ness as a wind-driven
uninodal baroclinic standing seiche. Subsequent investigations by Mortimer (1955)
and Thorpe (1971) revealed a progressive component to the Loch’s basin-scale internal
wave field. This wave was asymmetrical in character, owing to a steep ‘nonlinear’ wave
front and is typically referred to as a progressive internal surge. Remarkably similar
observations from other lakes abound (e.g. Hunkins & Fliegel 1973; Farmer 1978;
Mortimer & Horn 1982; Boegman et al. 2003). These observations show the internal
surge to contain a packet of spatially coherent large-amplitude internal solitary waves
which are followed by an oscillatory tail of irregular wavelength. The high-frequency
solitary waves are expected to break upon sloping topography at the basin perimeter
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leading to enhanced dissipation, fluxes and bioproductivity (e.g. Ostrovsky et al. 1996;
MacIntyre et al. 1999; Michallet & Ivey 1999; Kunze et al. 2002). Laboratory studies
suggest that between 5 % and 25 % (Helfrich 1992; Michallet & Ivey 1999) of the
incident solitary wave energy may be converted by diapycnal mixing to an irreversible
increase in the potential energy of the water column. However, the evolution, propaga-
tion and breaking of internal solitary waves are not reproduced in field scale hydro-
dynamic and water quality models (e.g. Hodges et al. 2000; Boegman et al. 2001).
This is a consequence of the waves being dispersive, resulting from non-hydrostatic
proceesses, and having wavelengths of order 100 m (Boegman et al. 2003), much
smaller than the feasible grid-point spacing. At present, these effects may not be
parameterized because the distribution and flux of energy between the standing
waves, the internal surge and the solitary waves remains unknown (Imberger 1998;
Horn, Imberger & Ivey 2001).

In this study we address these issues by using a laboratory model to quantify the
temporal energy distribution between the component internal wave modes: the baro-
clinic standing seiche, the progressive internal surge and the internal solitary waves. We
seek to cast our results in terms of parameters that are external to the evolving
sub-basin-scale flow (e.g. wind speed, quiescent pycnocline depth, etc.). This will
facilitate engineering application and parameterization into field-scale hydrodynamic
models. We consider systems in which the effects of the Earth’s rotation can be
neglected and that are subject to a single forcing event. In § 2, we present the relevant
theoretical background. The laboratory experiments are described in § 3, followed by
a presentation of results and a comparison to an analytical model. Finally, in § 4 we
estimate the loss of energy to the action of viscosity and are thus able to evaluate the
modal energy flux. In conclusion, our results are placed within the context of what is
presently known about the energetics of stratified lakes.

2. Theoretical background
During the summer months, a stratified lake will typically possess a layered structure

consisting of an epilimnion, a metalimnion and a hypolimnion. If the vertical density
gradient is abrupt through the metalimnion, the lake may be approximated as a simple
two-layer system of depth h1 and density ρ1 over depth h2 and density ρ2, where H =
h1 + h2 is the total depth and L denotes the basin length (e.g. Heaps & Ramsbottom
1966; Thorpe 1971; Farmer 1978). Internal waves may be initiated within a stratified
lake by an external disturbance such as a surface wind stress. The internal response of
the waterbody to a wind stress, as described by Fischer et al. (1979) and Spigel &
Imberger (1980), can be gauged by the ratio of the wind disturbance force to the
baroclinic restoring force. Thompson & Imberger (1980) introduced this ratio as the
Wedderburn number W , which may be expressed for our two-layer system (see, Horn
et al. 2001) as

W−1 =
ηo

h1

, (2.1)

where ηo is the amplitude of the initial disturbance. Note that when W ≈ 1 the
thermocline has upwelled to the surface at the windward shore.

From the initial condition of a tilted thermocline, Horn et al. (2001) applied two-
layered theoretical descriptions, verified by laboratory experiments, to identify the
mechanisms responsible for the degeneration of the evolving large-scale interfacial
gravity wave field. Through comparison of the characteristic time scales of the various
degeneration mechanisms, they defined five regimes in which a particular mechanism
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Figure 1. Analytical regime diagram characterizing the degeneration of large-scale gravity
waves, plotted in terms of the normalized initial forcing scale ηo/h1 and the depth ratio h1/H .
The laboratory observations are also plotted (�, Kelvin–Helmholtz (K-H) billows and bore; �,
broken undular bore; �, solitary waves; �, steepening; �, damped linear waves). Reproduced
from Horn et al. (2001).

was expected to dominate (figure 1). For small to medium-sized lakes subject to
weak forcing (W −1 < 0.3) an internal standing seiche is generated that is eventually
damped by viscosity. Moderate forcing (0.3 < W −1 < 1), results in the production of
a progressive internal surge and internal solitary waves.

For weak initial disturbances (W −1 < 0.3), the standing internal seiche that forms
is well described by the linear non-dispersive wave equation (e.g. Gill 1982, p. 127),

∂2η

∂t2
= c2

o

∂2η

∂x2
, (2.2)

where η(x, t) (positive upward) is the interfacial displacement, co =
√

(g′h1h2)/(h1 + h2)
the linear long-wave speed and g′ = g (ρ2 − ρ1) /ρ2 the reduced gravity at the interface.
Equation (2.2) admits periodic sinusoidal solutions of the form (e.g. Mortimer 1974)

η = a cos(kx + ωt), (2.3)

where a is the wave amplitude, ω the wave frequency, k = 2π/λ the wavenumber and
λ = 2L the fundamental wavelength. The period of an internal seiche Ti = 2π/ω for
an enclosed basin is

T
(n)
i =

2L

nco

, (2.4)
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where n= 1, 2, 3, etc. denotes the horizontal mode. Hereinafter, the fundamental time
scale Ti , without superscript, will be used to represent the gravest mode where n = 1.

A particular solution to (2.2) may be obtained for a rectangular tank stratified
with two superposed incompressible fluids of differing density. The no-flux boundary
conditions at the endwalls require the horizontal velocity to vanish and the fluid
interface to remain perpendicular to the boundary, such that

∂η

∂x
(0, t) =

∂η

∂x
(L, t) = 0, (2.5)

for t > 0. The initial conditions consist of a tilted interface with maximum displace-
ment denoted by ηo and no initial motion

η(x, 0) =
2ηo

L
x − ηo,

∂η

∂t
(x, 0) = 0, (2.6)

for 0 � x � L. The available potential energy of the perturbed state at t =0 is given
by integration of the general equation for the available potential energy (APE) (e.g.
Cushman-Roisin 1994, p. 213)

APE =
g(ρ2 − ρ1)

2

∫ L

0

η2(x, t) dx, (2.7)

over the initial condition, leading to

APEt=0 = 1
6
gL(ρ2 − ρ1)η

2
o. (2.8)

The general solution is

η(x, t) =

∞∑
n=1

kn cos

(
nπ

l
x

)
cos

(
conπ

l
t

)
, (2.9)

where kn are the coefficients in the Fourier cosine series

kn =
2

L

∫ L

0

(
2ηo

L
x − ηo

)
cos

(nπ

L
x
)

dx (n = 1, 3, 5 . . .) (2.10)

=
−8ηo

(nπ)2
. (2.11)

Figure 2(a–i) shows the evolution of the initial condition consisting of component
waves progressing from the boundaries (denoted by arrows). The resultant standing
wave pattern and associated baroclinic flow is periodic for each mode n, the period
given by (2.4). At t = 0, all wave energy is distributed in the potential form between
the odd modes (figure 2j–o). The modal distribution of available potential energy
resulting from the initial condition is given by substituting (2.9) and (2.10) into the
general equation for the available potential energy (2.7), resulting in

APE(n) = 16
gL(ρ2 − ρ1)η

2
o

(nπ)4
(n = 1, 3, 5 . . .) (2.12)

which may be summed over n where

∞∑
n=0

16

[(2n + 1)π]4
= 1

6
, (2.13)
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Figure 2. Solution of the wave equation initial-value problem resulting from a tilted interface.
(a–i) Evolution of the interface position. Panels are shown over half an internal wave period
(0< t <Ti/2) at intervals of Ti/16. The flow reverses (i.e. (i–a)) over Ti/2< t < Ti . (j–o)
Interfacial displacement of horizontal modes n= 1 to 6, respectively, at t =0 (solid line) and
t = Ti/2 (broken line). For description of arrows see text.

to give (2.8). This equality between the APE in the initial condition (from (2.6)) and
the sum of the APE calculated independently for the horizontal modes (from (2.9) at
t = 0) demonstrates that the modes given by (2.9) are a complete set.

Comparison of (2.8) and (2.12) reveals that the energy is partitioned between the
odd modes with 98.6 %, 1.2 % and 0.2 % of the initial energy in APEn=1, APEn=3 and
APEn=5, respectively. For a non-dissipative system, these modal energy distributions
represent the sum of kinetic and potential energy and are independent of time.

For moderate initial disturbances (0.3 <W −1 < 1), nonlinearities become significant
and an additional term is required in the governing wave equation. For illustrative
simplicity, we consider progressive unidirectional motions described by the nonlinear
and non-dispersive wave equation

∂η

∂t
+ co

∂η

∂x
+ αη

∂η

∂x
= 0, (2.14)

where the nonlinear coefficient α =(3co/2)(h1 − h2)/h1h2 (see, for example, Djordjevic
& Redekopp 1978; Kakutani & Yamasaki 1978). Bi-directional propagation and/or
endwall reflection would require a Boussinesq type equation (e.g. New & Pingree
2000; Redekopp 2000; Horn et al. 2002). The dependence of α on (h1 − h2) suggests
that the degree of nonlinearity in the system depends on the relative heights of the
stratifying layers as well as the local interfacial displacement η(x, t).
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Nonlinear waves will steepen under a balance between the unsteady (∂η/∂t) and
nonlinear αη(∂η/∂x) terms (Long 1972; Horn, Imberger & Ivey 1999). This leads to
a steepening timescale Ts (Horn et al. 2001)

Ts =
L

αηo

. (2.15)

As a wave steepens, dispersive effects become significant, eventually balancing non-
linear steepening (Hammack & Segur 1978). This results in the formation of higher-
frequency waves of permanent form. These waves often occur in lakes and oceans
as localized single entities and are thus called ‘solitary waves’. Internal solitary waves
may be modelled to first order in amplitude using the weakly nonlinear Kortweg–de
Vries (KdV) equation (e.g. Benney 1966; Gear & Grimshaw 1983; Horn et al. 2002)

∂η

∂t
+ co

∂η

∂x
+ αη

∂η

∂x
+ β

∂3η

∂x3
= 0, (2.16)

where the dispersive coefficient β = coh1h2/6. Note that if the interface occurs at
mid-depth, α vanishes thus inhibiting steepening and the subsequent production of
solitary waves. A particular solution to (2.16) is the solitary wave (Benney 1966)

η(x − ct) = a sech2
(x − ct

λ

)
, (2.17)

where the phase velocity c and horizontal length scale are given by

c = co + 1
3
αa, λ2 = 12

β

aα
. (2.18)

An estimate of the number and amplitude of solitary waves, while beyond the scope of
this study, may be obtained from the Schrödinger equation based on inverse scatter-
ing theory (e.g. Landau & Lifshitz 1959; Whitham 1974; Apel et al. 1985; Drazin &
Johnson 1989; Horn et al. 1999).

In general, the internal field that can evolve from the set-up or relaxation of the ther-
mocline is a combination of linear standing seiches, nonlinear progressive surges and
dispersive solitary waves. Each process occurring over differing time scales (Horn et al.
2001). These motions have been qualitatively reproduced for a two-layer stratification
in a rectangular box, both experimentally (Thorpe 1971, 1974) and analytically (Horn
et al. 2002). In general, the nonlinear and non-hydrostatic nature of the problem
does allow derivation of the interfacial displacements resulting from the linear,
nonlinear and non-hydrostatic internal wave modes (e.g. Peregrine 1966; Mortimer
1974; Horn et al. 1999; Miller & Clarke 2001); however, the distribution and flux of
energy between these coupled modes has remained analytically untractable (Redekopp
2000). We address this issue in the following sections through the use of laboratory
experiments to quantify both the temporal energy distributions and the fluxes.

3. Laboratory experiments
3.1. Experimental methods

Experiments were conducted in a sealed rectangular acrylic tank 6 m long, 0.3 m wide
and 0.29 m deep (figure 3a). The data were originally collected for the study by Horn
et al. (2001). The tank was filled with a two-layer stratification by tilting the tank
about its central axis (to a maximum angle of 23◦ from horizontal) and partially filling
the tank with the volume of water required for the upper fresh-water layer. From a
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Figure 3. (a) Schematic diagram of the experimental set-up. The ultrasonic wave gauges were
located at the positions marked A, B and C. (b) Initially tilted tank. (c) Initial condition with
the tank horizontal and the interface inclined. Reproduced from Horn et al. (2001).

reservoir of saline water, the lower layer was slowly pumped into the bottom of the
tank, thus displacing the buoyant fresh-water layer. Once full, the tank was gradually
rotated to a horizontal position resulting in a stretching of the isopycnal surface and
an increase in the density gradient within the interface. For visualization purposes,
the interface or one of the two layers was seeded with dye. Prior to commencing
an experiment the tank was rotated to the required interfacial displacement angle
(figure 3b). From this condition, the set-up and subsequent relaxation from a wind
stress was simulated through a rapid rotation of the tank to the horizontal position,
leaving the interface inclined at the original angle of tilt of the tank (figure 3c). Each
time the tank was filled with a particular stratification, a set of experiments were
carried out with increasing angles of tilt. This resulted in a gradual thickening of the
density interface over the course of experiments, from about 1 to 2 cm. The result-
ing vertical displacements of the density interface η(x, t) were measured using three
ultrasonic wave gauges (Michallet & Barthélemy 1997) distributed longitudinally
along the tank at locations A, B and C. (figure 3a). The wave gauges logged data to
a personal computer at 50 Hz via a 12-bit analogue-to-digital converter. The experi-
mental variables considered in this study, together with the resolution with which
they were determined are given in table 1.

3.2. Experimental observations

At the beginning of each experiment the flow was driven by the baroclinic pressure
gradient that resulted from the tilted density interface (figure 4a). The fluid layers
were observed to accelerate rapidly from rest, the lower layer moving toward the
downwelled end of the tank and a corresponding return flow in the upper layer. This
motion was characteristic of a standing horizontal mode one (H1) seiche (figure 4a–f ).
The progressive surge (figure 4c–d ) and solitary waves (figure 4e–i ) were also clearly
visible, causing the observed internal wave field to deviate significantly from the
linear model (figure 2a–i ). The progressive surge and solitary wave packet may
be qualitatively compared to an undular hydraulic jump (e.g. Henderson 1966, his
figure 6–29a), where the frame of reference is vertically inverted to match the corres-
ponding relative thicknesses of the superposed fluid layers. However, the internal surge
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Run h1/H θ (deg.) W −1 = (ηo/h1) Ts (s)

1 0.20 0.34 0.28 203
2 0.20 0.54 0.44 129
3 0.20 0.80 0.65 87
4 0.20 1.08 0.88 65
5 0.30 0.28 0.15 434
6 0.30 0.50 0.27 241
7 0.30 0.79 0.43 151
8 0.30 1.09 0.59 110
9 0.30 1.53 0.83 78

10 0.40 0.25 0.10 1044
11 0.40 0.56 0.23 454
12 0.40 1.03 0.42 248
13 0.40 1.15 0.47 222
14 0.40 2.04 0.83 126
15 0.50 0.18 0.06 –
16 0.50 1.32 0.43 –
17 0.50 2.12 0.69 –

Table 1. Summary of experimental runs. The experimental variables together with the resolu-
tion with which they were determined: the initial angle of tilt θ (±0.03◦), the interface depth
h1 (±0.2 cm) and the density difference between the upper and lower layers ∆ρ ≈ 20 kgm−3

(±2 kgm−3).

is not necessarily the result of supercritical flow conditions (see figure 1 with h1/H =
0.3 and ηo/h1 = 0.9), but is usually due to nonlinear steepening of a finite-amplitude
wave. The evolution of the progressive surge is further discussed in § 4.2.

In figure 5(a–e) interface displacement time series observed at wavegauge C (defined
in figure 3) are compared to the linear analytical solution (2.9). The angle of tilt in-
creases with each successive panel. For small W−1 (figure 5a), the interface is observed
to oscillate about the equilibrium position in the same manner as predicted analyti-
cally, although viscous effects cause a continual decrease of amplitude with time. For
large W−1 (figure 5c–e), a secondary wave (denoted by �) is observed approximately
30 s out of phase with the H1 seiche (denoted by �). This wave is progressive in
nature and is described below. As W −1 increases, dispersive, viscous and nonlinear
processes cause the observed time series to deviate strongly from the analytical linear
theory solution over shorter time scales. Solitary waves are observed at approximately
Ts and viscous decay is evident through the decrease in observed wave amplitude over
time. Spectral analysis of the time series at wave gauge C reveals the most energetic
H1 mode as well as a series of odd modes consistent with the analytical model
(figure 5f ).

In figure 6(a–e), the interface displacement time series observed at wave gauge B are
compared to the analytical solution. This wave gauge is located near the nodal position
for the linear modes and therefore the analytical solution does not exhibit an inter-
facial displacement. For small W−1 (figure 6a), the system remains linear, matching
the analytical solution. As W−1 is increased (figure 6b–e), an oscillation with period
Ti/2 is observed. This oscillation must be a consequence of nonlinear effects and is
progressive, passing the wave gauge twice during Ti (figure 4). For large W−1 (figure
6e) the progressive wave rapidly steepens into an internal surge which degenerates
into solitary waves soon thereafter (as t → Ts). Spectra of the interface displacement
at wavegauge B (figure 6f ) confirm the progressive surge signal to have the same Ti/2
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(a)    t = 0

(b)         10 s (0.1Ti)

(c)          20 s (0.18Ti)

(d )         30 s (0.27Ti)

(e)         50 s (0.45Ti)
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      130 s (1.18Ti)

Figure 4. Video frames showing the standing seiche, evolving progressive surge and solitary
waves. The initial condition is shown in (a). The surge and solitary wave packet are propagating
to the left in (b)–(f ), reflecting off the endwall in (g) and to the right in (h)–(i). For this
experiment h1/H = 0.3, ηo/h1 = 0.9, Ti = 110 s and Ts = 40 s.

frequency as the horizontal mode two (H2) mode with harmonics evident at other
even modes. In both spectral plots (figures 5f and 6f ) a bifurcation of the individual
spectra is evident between approximately 5 × 10−2 Hz and 5 × 10−1 Hz indicating the
frequency bandwidth containing the solitary waves.

The experimental observations reveal that the standing seiche, progressive surge
and solitary waves occupy discrete bandwidths in frequency space. The discrete nature
of the signals thus allows isolation of the component due to each wave group through
selective filtering of the interface displacement time series in the frequency domain.
In particular, the odd linear modes are recorded on wave gauges A and C, the even
nonlinear modes on wave gauge B, and solitary waves on all wave gauges at frequen-
cies below 5 × 10−2 Hz. The procedure for obtaining the temporal energy distribution
in each of these modes is described below.

3.3. Decomposition of the internal wave field

The basin-scale H1 seiche signal was obtained by low-pass filtering the time series
from the wave gauges located in non-nodal positions (wave gauges A and C) using
a fourth-order Butterworth filter with a cutoff frequency located midway between
the frequencies of the H1 and H2 modes (i.e. passes frequencies f < (3/2)Ti). This
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Figure 5. Time series of the observed interface displacement (solid line) and linear initial-value
problem (broken line) at wave gauge C: (a) ηo/h1 = 0.15; (b) ηo/h1 = 0.27; (c) ηo/h1 = 0.43;
(d) ηo/h1 = 0.59; (e) ηo/h1 = 0.83. For the time series shown h1/H =0.3, Ti = 109 s and the
vertical dotted lines denote Ts from equation (2.15). The � and � symbols denote crests of the
observed H1 seiche and progressive surge, respectively. (f ) Interface displacement spectra for
the observed time series in (a) to (e). The bottom line corresponds to (a), etc. and the vertical
dotted lines denote the frequencies of the lowest eight basin-scale standing modes calculated
from (2.4).

bandwidth neglects the higher linear modes, which contain less that 1.5 % of the
basin-scale internal wave energy.

The signals associated with the progressive surge and solitary wave modes were
observed at all three of the wave gauges. However, these signals were only filtered from
the time series at wave gauge B, which as a nodal location is not contaminated by
the motion of the H1 seiche. The surge and solitary wave signals were isolated using
band-pass (surge) and high-pass (solitary waves) second-order Butterworth filters
passing frequencies (3/2)Ti <f < (1/3)Ti and f > (1/3)Ti , respectively. Figure 7(a–c)
shows the filtered time series for a typical experiment where W−1 = 0.44 and h1/H =
0.2. Note the occurrence of solitary waves at t ≈ Ts and the temporal decrease in
amplitude of all the observed signals resulting from viscous effects. Comparison of
figure 7(a) and figure 7(b), reveals the progressive surge to be of the same spatial form
as the sinusoidal H1 seiche, yet increasing in amplitude as t → Ts . The progressive
nature of the surge results in a doubling of the wave frequency relative to the seiche.
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Figure 6. Same as figure 5 except at wave gauge B.

Assuming an equipartition between the kinetic and potential forms of wave energy
(e.g. Bogucki & Garrett 1993), the total energy in each of the three filtered components
was quantified in a particular wave period as twice the potential energy calculated
using (2.7). To allow the integral to be evaluated directly from the filtered time series,
the integrand was transformed from spatial to temporal coordinates using the linear
phase speed (e.g. Michallet & Ivey 1999)

Total energy = cog (ρ2 − ρ1)

∫ t2

t1

η2(t) dt. (3.1)

To apply (3.1) to the filtered standing seiche signal, it was first necessary to uncouple
the left and right propagating components making up the standing-wave pattern. For
these components, the assumption of an equipartition between kinetic and potential
wave energy is valid. The total energy was then taken as the sum of the energy
in the two components. The uncoupling was accomplished by first calculating the
interface displacement η(x, t) for all t over the tank length (0 � x � L), through a
least-squares fit of a cosine function to the filtered interface displacements at wave
gauges A, B and C. The maximum standing-wave amplitude was then evaluated at
the endwall (i.e. η(x = 0 or L, t)). This amplitude was divided by two to give the
equivalent amplitudes of the incident and reflected standing-wave components. The
total energy was then individually calculated for each of these two components using
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(3.1) and summed. For the progressive surge and solitary waves, η(t) was simply
the filtered time series. For all three wave groups, the integral in (3.1) was over
Ti/2 as this is the time required for one wave/packet length to propagate through a
particular wave gauge. Note that although the filtered time series are not orthogonal
(i.e. η = η1+η2+η3, but (η1+η2+η3)

2 �= (η2
1+η2

2+η2
3)), the total wave energy evaluated

from the unfiltered (raw) signal remains equal to the sum of the energy evaluated
independently for the three filtered modes. This results from the filtered signals being
solely a manifestation of the available potential energy in a particular mode, which are
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subject to the equipartition required by (3.1). Conversely, the unfiltered signal exhibits
modal interaction, which may favour the harbouring of energy in the kinetic form
and does not necessitate that kinetic and potential energy remain equally partitioned
(i.e. C(η1 + η2 + η3)

2 = 2(η2
1 + η2

2 + η2
3), for C �= 2).

To verify our methods, a second technique was applied to quantify the energy in
the H1 seiche. The cosine function originally fitted to the interface displacements
was integrated throughout the domain using (2.7). The total energy was obtained by
evaluating the integral at times when the standing-wave crests and troughs were at the
maximum amplitudes (i.e. t = 0, Ti/2, Ti/4, etc.) and all energy was in the potential
form. Integrals evaluated at consecutive time intervals (e.g. t = 0 and Ti/2) were
averaged to give a mean energy during that period. This allows for direct comparison
with the results from (3.1).

To minimize start-up transients, several filter lengths of a reflected copy of the input
signal were appended to the beginning of the time series. However, transients will still
occur over t < 1/fh, where fh is the Nyquist or highest cutoff frequency (shown as a
shaded region in figure 7a–c). To compensate for filter start-up with the linear seiche
(figure 7a), the energy during the first period was taken as the average of the energy
in the initial condition, from (2.8), and the H1 energy at t = Ti using (3.1). Start-up
was corrected for in figure 7(b) by replacing the filtered signal with the unfiltered
signal within the shaded region. This simple substitution was permissible prior to the
evolution of solitary waves at t = Ts . In figure 7(c) a correction for filter start-up
was not required as both the filtered and unfiltered signals are near zero prior to the
evolution of the solitary waves.

The results of these methods for determining the energy in the various wave groups
are shown in figure 7(d) for a typical experimental run. The energy during each integral
is normalized by the energy in the initial condition (APE) as determined from the
observed displacements at t = 0 using (2.7). Both energy estimates for the H1 mode
compare well, showing an exponential decrease in energy over time from around 65 %
of APE during the first period to less than 5 % after four periods. Surprisingly, 10 %
of APE is already observed in the progressive surge for time t < Ti/2. This energy
increases to approximately 20 % as the surge steepens (t → Ts), decreasing thereafter
as the solitary wave packet attains its maximum energy at t ≈ 2Ti .

3.4. Experimental results

The methods to partition the internal wave energy between the linear seiche, progres-
sive surge and internal solitary waves were applied to the data from all experimental
runs. The results are presented in figure 8, where in each panel the vertical axis is
W −1 and the horizontal axis h1/H are analogous to those presented in figure 1. In
the figure matrix, the three columns represent the three wave groups, the rows show
the evolution in time, and the contours in each plot denote the modal energy as a
percentage of the observed APE at t = 0.

During 0 < t < Ti (figure 8a, e, i) for large h1/H and small ηo/h1, at least 50–70 % of
the APE is accounted for by the standing H1 seiche, with less than 10% in the surge
or solitary waves. For small h1/H and large ηo/h1, 20–60 %, 0–20 % and 0–10 % of
the APE is in the seiche, surge and solitary waves, respectively. The energy content
in the H1 seiche thus increases as the system becomes ‘linear’ (i.e. ηo/h1 → 0 and
h1/H → 0.5) and decreases uniformly throughout the domain with time (figure 8a–d ).
The partition of energy in the progressive surge (figure 8e–h) is greater when the
system is ‘nonlinear’ (i.e. ηo/h1 → 1 and h1/H → 0), thus accounting for the reversed
energy gradient relative to that of the H1 seiche. Nonlinear steepening initially occurs
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Figure 8. Temporal evolution of APE distribution between the component internal wave
modes. The axes and regime boundaries of each panel are as in figure 1.

over 0< t <Ti in the ‘more nonlinear’ region of the domain (figure 8e). For these
experiments Ti < Ts < 2Ti , causing an observed energy flux to the solitary wave mode,
(e)–(j ), rather than energy being conserved in the surge with time, (e)–(j ). In the
‘less nonlinear’ region, nonlinear and dispersive effects occur over longer time scales
Ti < t < 2Ti and 2Ti < t < 3Ti , respectively, yet the energy flux to the sub-basin-scale
solitary mode is maintained (the energy flows from (f ) to (k), rather than (f ) to (g)).
Note that there is little observed energy loss during this dispersive energy transfer
from low to high-frequency. These results do not account for the energy loss by the
action of viscosity, which eventually damps all motions. Quantification of this loss is
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Mode Equation Source

H1 seiche
dEH1

EH1

∼ πδbAb

V
+

νHTi

δρh1h2

Horn et al. (2001)

Nonlinear surge
dENS

ENS
∼ (1 − e−σL) Troy (2003)

Solitary waves
dESW

dt
∼ 4

√
2ρ2(1 − ρ1/ρ2)g

5/4ν1/2 |η̄|7/4

31/4π3/2
(
h1h

2
2

∣∣h2
1 − h2

2

∣∣)1/4
Leone et al. (1982)

×
[(

1 +
2h2

B

)
h2

1 +
2h1h

2
2

B
+ 1

2
(h1 + h2)

2

]

Table 2. Viscous damping equations. Ab is the total boundary area, V is the tank volume,
ν is the kinematic viscosity and δρ is the thickness of the density interface (taken as 1 cm),

δb ≈ (νTi/π)1/2 is the thickness of the oscillatory boundary layer (Batchelor 1967, pp. 193 and
354). σ is the sum of the individual decay rates resulting, in order of dominance, from:
sidewall boundary-layer dissipation, interfacial dissipation, bottom boundary-layer dissipation
and internal dissipation (see Troy (2003) for the decay rate equations). B is the channel width
and η̄(t) is the maximum solitary-wave amplitude (taken as the maximum amplitude in each
solitary wave packet). See text for description of other symbols.

required to close the energy budget and so it is theoretically estimated in the following
section.

4. Discussion
4.1. Estimation of viscous damping

We have quantified the energy in each of the three component internal wave modes:
the basin-scale standing seiche, the progressive surge and the solitary waves. Wave
breaking was not observed, which implies that the majority of wave energy is ulti-
mately lost by the action of viscosity. Assuming laminar boundary and interfacial
layers, this viscous loss was theoretically estimated for each of the wave modes in
isolation.

The fraction of wave energy dissipated from the standing H1 wave during one inter-
nal wave period dEH1/EH1 was estimated for the laboratory experiments considering
both the losses at the solid boundaries and in the interfacial shear layer. Horn et al.
(2001) integrated these losses for one wave period over the solid boundaries in each
layer (excluding endwalls) and the interfacial area table 2. The first term is the energy
loss at the solid boundaries and the second term the loss in the interfacial shear layer.
The fraction of progressive surge energy which is lost to viscous damping during
one wave period dENS/ENS was estimated using a theoretical model by Troy (2003).
In this formulation the total energy equation is integrated vertically and laterally
for progressive interfacial waves in a laterally bounded rectangular channel table 2.
Finally, the rate of energy loss from the solitary waves dESW/dt was estimated, for
a KdV type interfacial solitary wave propagating in a rectangular channel, using the
model by Leone, Segur & Hammack (1982) (table 2). Of the three terms on the right-
hand side of this expression, the first and second represent the energy loss from the
lower and upper fluid layers along the rigid boundaries, respectively, and the third
term represents the energy loss at the interface. The total energy loss was quantified
by summing the loss from each of these three components. This loss was applied to
close the energy budget.
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Figure 9. Same as figure 8, but viscous energy losses are accumulated
with time along each column.

In figure 9, the axes, columns and rows are analogous to figure 8; however, the
contours at each time interval denote the sum of both the observed wave energy and
the cumulative theoretical viscous loss. Again, the energy is presented as a percentage
of the observed APE. Comparison to figure 8 reveals that 20 %, 10 % and 10 % of
the energy from the seiche, surge and solitary waves, respectively, may be dissipated
owing to viscosity in the first period alone. Most strikingly, panels (c)–(d), (g)–(h)
and (k)–(l) are nearly identical. Therefore, there is little or no energy flux between
modes for t > 2Ti; an indication that after the initial nonlinear distribution of energy
between the H1 seiche and surge and the subsequent dispersive energy flux to the
solitary waves, the internal modes remain uncoupled.
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4.2. The progressive surge and solitary waves

An essential feature of the downscale energy flux linking the initial basin-scale motions
to the higher-frequency solitary waves is the progressive surge. The amount of energy
in the surge is a function of the degree of nonlinearity of the system. This may be
expressed as a single non-dimensional parameter (rather than W −1 and h1/H ) taken
as the ratio of the linear and nonlinear terms in (2.16)

αηo

co

≡ 3ηo

2

|h1 − h2|
h1h2

, (4.1)

where we have taken η ∼ ηo ∼ a. In this formulation, nonlinearities are incorporated
owing to both increasing W−1 and decreasing h1/H . A value of αa/co ∼ 0.1 has been
shown to be sufficient for visible nonlinear wave deformation (Holloway & Pelinovsky
2001, p. 42). In figure 10(a), the normalized energy in the surge ENS/APE is plotted
versus αηo/co. Averaged over each wave period, the data collapse to a single line,
which has been obtained as a least-squares fit (see figure caption for details). For
αηo/co > 0.4, the surge is excited during the first period and the system is sufficiently
nonlinear that the maximum energy fraction

ENS

APE
≈ 0.2. (4.2)

For 0 < αηo/co < 0.4, the maximum surge energy is obtained during the second
period, because here 2Ti > Ts > Ti . In general, the maximum energy increases in
direct proportion to αηo/co and is given by

ENS

APE
≈ 0.5

αηo

co

. (4.3)

For t > 2Ti , there is no further energy flux between modes, and the surge energy
decreases uniformly owing to the action of viscosity (in agreement with figure 9).

In figure 10(b), ENS/APE contours drawn from the least-squares data in figure 10(a)
are presented in the (αηo/co)−Ti plane. Also plotted on figure 10(b) is the curve of Ts

versus αηo/co, showing the Ts data to collapse to a single line, which is coincident with
the ridge of maximum surge energy. The energy in the progressive surge is shown to
have increased during an initial nonlinear steepening phase (0 < t � Ts) and retained
up to 20 % of the APE at t ≈ Ts . For t > Ts , the ENS/APE decreased from this
maximum, with a corresponding increase in ISW energy, until eventually all of the
surge energy was transferred to the solitary waves with little loss (figure 10c). In the
absence of sloping topography, the energy in the ISW packet was ultimately lost to
viscosity on time scales of order 3Ti to 5Ti . These results are consistent with analytical
models (2.15) which shows that the surge steepens as t → Ts and subsequently
degenerates into solitary waves. Why the energy in the progressive surge is limited to
20 % of APE remains unknown.

We may investigate the evolution of the progressive surge from the initial condition
by conceptualizing the wave field as being composed of two separate parts, both
emanating from the positive and negative displacement volumes that initially co-exist,
but are spatially separated. If we consider displacements of very small amplitude, such
as those governed by linearized equations, there is no qualitative distinction between
the resulting left and right propagating waves. These components form the standing
seiche. However, for larger displacements the negative initial volume will evolve into
a packet of solitary waves of depression, while the positive initial volume evolves into
a positive dispersive wave, referred to as a rarefaction (Horn et al. 2002). The lack of
symmetry between the two finite-amplitude components is a direct consequence of the
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points (indicated by ·). In (a) and (b) the contours are presented as a percentage of the APE
introduced at t = 0 with a contour interval of 2.5%. The solid line denotes Ts fitted to pass
through values at h1/H = 0.2, 0.3, 0.4 and 0.5.

nonlinearity of the governing equations (e.g. Stoker 1957, p. 306) and the progressive
nature of the internal surge and solitary wave packet results from the combination
of these asymmetrical modes.

4.3. Field observations

To determine the applicability of our analysis to real lakes, we computed the temporal
evolution of the modal energy content for a lake with suitable field data (Baldeggersee,
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in § 3.3. The lake was subject to three along axis wind events. The first wind event ceases at
the origin of the time axis, while the timing of the second and third events is denoted by
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(c), Ts (−−) is presented from the end of both the first and third wind events.

Switzerland). This small deep lake with a rectangular basin shape is subject to pulses of
high wind stress along the major axis. Published observations were digitally recovered
during a period of seasonal stratification with three along axis wind events (Lemmin
1987, his figure 6). These observations occurred at stations positioned in a manner
analogous to our distribution of wave gauges, being both near the centre of the lake
and near the boundaries. To allow comparison with our two-layer experiments, the
motion of the internal wave field initiated by the wind was isolated as the displacement
of the 7◦ isotherm (located in the centre of the metalimnion), and filtered as described
in § 3.3.

Raw and filtered time series (figure 11a, b) are qualitatively consistent with the
laboratory results (figure 8a, b), particularly the relative phase and amplitude of the
H1 seiche and surge crests. The H1 seiche energy is initially between 40 % and 50 %
of the APE and as t → Ts the energy content in the surge is maximal near 20 % of the
APE (figure 11c). These results are in quantitative agreement with figures 8(a) and (e),
respectively. Viscous damping appears to be weaker than experimentally observed,
with the surge energy persisting at greater than the 10 % level for the first six periods,
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although this may be a consequence of resonant wind forcing. Solitary wave packets
were not observed, but such waves would be aliased by the 20 min sampling period.
This period is much greater than the theoretical solitary wave period calculated from
(2.18), with a ∼ ηo, to be TISW = λ/c ≈ 43/0.14 ≈ 300 s. High-frequency internal solitary
wave packets have been observed to occur in other lakes after strong wind forcing
events (e.g. Thorpe, Hall & Crofts 1972; Hunkins & Fliegel 1973; Farmer 1978;
Boegman et al. 2003). These waves are thought to result from nonlinear processes
and may each possess ∼1 % of the energy within the basin-scale internal wave field.
Furthermore, the wave packets are capable of propagating to the lake perimeter where
they can shoal, thus releasing their energy directly to the benthic boundary layer.

The question remains as to what would occur if the solitary wave packet impinged
upon sloping topography at the lake boundary. Results presented by Boegman, Ivey
& Imberger (2005) and the work of Helfrich (1992) and Michallet & Ivey (1999)
demonstrate that as much as 90–95 % of the energy contained within the solitary
wave packet may be lost in a single wave-sloping boundary interaction process,
thus enhancing localized mixing and dissipation. Furthermore, if the system were
periodically forced it may be imagined that a quasi-steady state is achieved, whereby
up to 20 % of APE is continually found in the surge and solitary wave modes. This
energy would be conveyed to the lake boundary, the particular spatial and temporal
energy distributions being governed by the topography and the relative frequencies
1/Ti , 1/Ts and that of the forcing. We leave these outstanding issues to be addressed
elsewhere.

5. Conclusions
We have extended the work of Thorpe (1971, 1974) and Horn et al. (2001) by

quantifying the temporal distribution of energy between the three component internal
wave modes. Our model is both qualitatively and quantitatively consistent with
published field observations. Depending upon the initial conditions, during 0< t < Ti

between 20 % and 70 % of the APE may be found in the H1 seiche, with less than
20 % and 10 % in the surge and solitary waves, respectively. The remainder is lost
to the action of viscosity. These findings demonstrate that linear analytical models
may significantly underestimate the total energy contained in the internal wave field.
Furthermore, such linear models cannot describe the development of the progressive
surge, which serves as a vital link between basin-scale and sub-basin-scale motions.
The surge receives up to 20 % of the APE during the nonlinear steepening phase
(t < Ts) and, in turn, conveys all of this energy to the smaller-scale solitary waves as
dispersion becomes significant (t > Ts). This temporal energy flux may be quantified
in terms of the ratio of the linear and nonlinear terms in the nonlinear non-dispersive
wave equation. Through estimation of the viscous energy loss, it was established that
all modal energy flux occurred while t < 2Ti , the modes being independently damped
thereafter. Finally, it is evident that this degeneration process, which is both non-
hydrostatic and sub-grid scale, remains as a challenge to be captured by field-scale
hydrodynamic models.
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